Improved Pose Estimation for Mobile Robots by Fusion of Odometry Data and Environment Map
نویسندگان
چکیده
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods, usually require explicit measurement of actual motion of the robot. Some recent methods, use the smart encoder trailer or long range finder sensors such as ultrasonic or laser range finders for automatic calibration. Manual measurement is necessary in the case of the robots that are not equipped with long range detectors or such smart encoder trailer. Our proposed approach, uses an environment map that is created by fusion of proximity data, in order to calibrate the odometry error automatically. In the new approach, the systematic part of the error is adaptively estimated and compensated by an efficient and incremental maximum likelihood algorithm. Actually, environment map data are fused with the odometry and current sensory data in order to acquire the maximum likelihood estimation. The advantages of the proposed approach are demonstrated in some experiments with Khepera robot. It is shown that the amount of pose estimation error is reduced by a percentage of more than 80%.
منابع مشابه
A New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملImproved On-Line Pose Estimation for Mobile Robots by Fusion of Odometry Information and Environment Map
A new method for on-line pose estimation in mobile robotics applications is presented in this paper. Using the information provided by the wheel encoders usually is accompanied with additive systematic and nonsystematic errors. Much effort has been done to overcome this problem. In the proposed approach, it is assumed that the robot is making an occupancy grids map of the environment during exp...
متن کاملA New Approach to Self-localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملReduction of Odometry Error in a two Wheeled Differential Drive Robot (TECHNICAL NOTE)
Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel p...
متن کاملImproving Robot Self-localization Using Landmarks' Poses Tracking and Odometry Error Estimation
In this article the classical self-localization approach is improved by estimating, independently from the robot’s pose, the robot’s odometric error and the landmarks’ poses. This allows using, in addition to fixed landmarks, dynamic landmarks such as temporally local objects (mobile objects) and spatially local objects (view-dependent objects or textures), for estimating the odometric error, a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 36 شماره
صفحات -
تاریخ انتشار 2003